Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Microorganisms ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37894080

RESUMO

SARS-CoV-2 diagnostic tests have become an important tool for pandemic control. Among the alternatives for COVID-19 diagnosis, antigen rapid diagnostic tests (Ag-RDT) are very convenient and widely used. However, as SARS-CoV-2 variants may continuously emerge, the replacement of tests and reagents may be required to maintain the sensitivity of Ag-RDTs. Here, we describe the development and validation of an Ag-RDT during an outbreak of the Omicron variant, including the characterization of a new monoclonal antibody (anti-DTC-N 1B3 mAb) that recognizes the Nucleocapsid protein (N). The anti-DTC-N 1B3 mAb recognized the sequence TFPPTEPKKDKKK located at the C-terminus of the N protein of main SARS-CoV-2 variants of concern. Accordingly, the Ag-RDT prototypes using the anti-DTC-N 1B3 mAB detected all the SARS-CoV-2 variants-Wuhan, Alpha, Gamma, Delta, P2 and Omicron. The performance of the best prototype (sensitivity of 95.2% for samples with Ct ≤ 25; specificity of 98.3% and overall accuracy of 85.0%) met the WHO recommendations. Moreover, results from a patients' follow-up study indicated that, if performed within the first three days after onset of symptoms, the Ag-RDT displayed 100% sensitivity. Thus, the new mAb and the Ag-RDT developed herein may constitute alternative tools for COVID-19 point-of-care diagnosis and epidemiological surveillance.

2.
Microorganisms ; 11(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110475

RESUMO

The detection of KPC-type carbapenemases is necessary for guiding appropriate antibiotic therapy and the implementation of antimicrobial stewardship and infection control measures. Currently, few tests are capable of differentiating carbapenemase types, restricting the lab reports to their presence or not. The aim of this work was to raise antibodies and develop an ELISA test to detect KPC-2 and its D179 mutants. The ELISA-KPC test was designed using rabbit and mouse polyclonal antibodies. Four different protocols were tested to select the bacterial inoculum with the highest sensitivity and specificity rates. The standardisation procedure was performed using 109 previously characterised clinical isolates, showing 100% of sensitivity and 89% of specificity. The ELISA-KPC detected all isolates producing carbapenemases, including KPC variants displaying the ESBL phenotype such as KPC-33 and -66.

3.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992364

RESUMO

Zika virus (ZIKV), a mosquito-borne pathogen, is an emerging arbovirus associated with sporadic symptomatic cases of great medical concern, particularly among pregnant women and newborns affected with neurological disorders. Serological diagnosis of ZIKV infection is still an unmet challenge due to the co-circulation of the dengue virus, which shares extensive sequence conservation of structural proteins leading to the generation of cross-reactive antibodies. In this study, we aimed to obtain tools for the development of improved serological tests for the detection of ZIKV infection. Polyclonal sera (pAb) and a monoclonal antibody (mAb 2F2) against a recombinant form of the ZIKV nonstructural protein 1 (NS1) allowed the identification of linear peptide epitopes of the NS1 protein. Based on these findings, six chemically synthesized peptides were tested both in dot blot and ELISA assays using convalescent sera collected from ZIKV-infected patients. Two of these peptides specifically detected the presence of ZIKV antibodies and proved to be candidates for the detection of ZIKV-infected subjects. The availability of these tools opens perspectives for the development of NS1-based serological tests with enhanced sensitivity regarding other flaviviruses.


Assuntos
Proteínas não Estruturais Virais , Infecção por Zika virus , Feminino , Humanos , Recém-Nascido , Gravidez , Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Peptídeos , Testes Sorológicos , Proteínas não Estruturais Virais/isolamento & purificação , Zika virus
4.
Microorganisms, v. 11, n. 4, 1052, abr. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4878

RESUMO

The detection of KPC-type carbapenemases is necessary for guiding appropriate antibiotic therapy and the implementation of antimicrobial stewardship and infection control measures. Currently, few tests are capable of differentiating carbapenemase types, restricting the lab reports to their presence or not. The aim of this work was to raise antibodies and develop an ELISA test to detect KPC-2 and its D179 mutants. The ELISA-KPC test was designed using rabbit and mouse polyclonal antibodies. Four different protocols were tested to select the bacterial inoculum with the highest sensitivity and specificity rates. The standardisation procedure was performed using 109 previously characterised clinical isolates, showing 100% of sensitivity and 89% of specificity. The ELISA-KPC detected all isolates producing carbapenemases, including KPC variants displaying the ESBL phenotype such as KPC-33 and -66.

5.
Gut Microbes, v. 15, n. 1, 2190308, mar. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4845

RESUMO

Pathogenic subsets of Escherichia coli include diarrheagenic (DEC) strains that cause disease within the gut and extraintestinal pathogenic E. coli (ExPEC) strains that are linked with urinary tract infections, bacteremia, and other infections outside of intestinal tract. Among DEC strains is an emergent pathotype known as atypical enteropathogenic E. coli (aEPEC), which can cause severe diarrhea. Recent sequencing efforts revealed that some E. coli strains possess genetic features that are characteristic of both DEC and ExPEC isolates. BA1250 is a newly reclassified hybrid strain with characteristics of aEPEC and ExPEC. This strain was isolated from a child with diarrhea, but its genetic features indicate that it might have the capacity to cause disease at extraintestinal sites. The spectrum of adhesins encoded by hybrid strains like BA1250 are expected to be especially important in facilitating colonization of diverse niches. E. coli common pilus (ECP) is an adhesin expressed by many E. coli pathogens, but how it impacts hybrid strains has not been ascertained. Here, using zebrafish larvae as surrogate hosts to model both gut colonization and extraintestinal infections, we found that ECP can act as a multi-niche colonization and virulence factor for BA1250. Furthermore, our results indicate that ECP-related changes in activation of envelope stress response pathways may alter the fitness of BA1250. Using an in silico approach, we also delineated the broader repertoire of adhesins that are encoded by BA1250, and provide evidence that the expression of at least a few of these varies in the absence of functional ECP.

6.
Viruses, v. 15, n. 3, 654, fev. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4842

RESUMO

Zika virus (ZIKV), a mosquito-borne pathogen, is an emerging arbovirus associated with sporadic symptomatic cases of great medical concern, particularly among pregnant women and newborns affected with neurological disorders. Serological diagnosis of ZIKV infection is still an unmet challenge due to the co-circulation of the dengue virus, which shares extensive sequence conservation of structural proteins leading to the generation of cross-reactive antibodies. In this study, we aimed to obtain tools for the development of improved serological tests for the detection of ZIKV infection. Polyclonal sera (pAb) and a monoclonal antibody (mAb 2F2) against a recombinant form of the ZIKV nonstructural protein 1 (NS1) allowed the identification of linear peptide epitopes of the NS1 protein. Based on these findings, six chemically synthesized peptides were tested both in dot blot and ELISA assays using convalescent sera collected from ZIKV-infected patients. Two of these peptides specifically detected the presence of ZIKV antibodies and proved to be candidates for the detection of ZIKV-infected subjects. The availability of these tools opens perspectives for the development of NS1-based serological tests with enhanced sensitivity regarding other flaviviruses.

7.
Pathogens ; 11(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015015

RESUMO

The serogroup O55 of E. coli is composed of strains whose mechanisms of virulence are different from each other. Since the O55 polysaccharides are present in all E. coli O55 strains, and so are the polymers that compose the capsule of O55 atypical enteropathogenic E. coli (aEPEC), it was investigated whether anti-O55 antibodies were able to help the innate immune system to eliminate capsulated aEPEC and Shiga toxin-producing E. coli (STEC) belonging to the serogroup O55. The results demonstrate that the capsule of EPEC was able to inhibit the deposition of C3b on the bacterial surface and, as a consequence, their lysis by the alternative pathway of the complement system. However, in the presence of antibodies, the ability of the complement to lyse these pathogens was restored. It was also observed that macrophages were able to ingest EPEC and STEC, but they were only able to kill the ingested pathogens in the presence of antibodies. Anti-O55 antibodies were also able to inhibit aEPEC and STEC O55 adherence to human epithelial cells. In summary, the results demonstrated that the O55 polysaccharides have the potential to induce an effective humoral immune response against STEC and EPEC, indicating that they are good antigen targets to be used in vaccine formulations against these pathogens.

8.
Braz J Microbiol ; 53(2): 777-783, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35129818

RESUMO

Dengue is the most prevalent arboviral disease in humans in tropical and subtropical regions, especially in urban areas, and can cause major epidemics. Although a self-limiting illness, it may sometimes have serious hemorrhagic manifestations, and the outcome of dengue hemorrhagic fever has similar clinical manifestations as in other infections, which could result in death. Therefore, autopsy procedures are required under certain circumstances such as in hemorrhagic fevers, sometimes to confirm or to clarify the diagnosis that may have epidemiological consequences. Normally, the Immunohistochemistry Laboratory of the Pathology Center of Adolfo Lutz Institute receives autopsy samples from different hospitals in Sao Paulo State to confirm a previous diagnosis, especially hemorrhagic fever of infectious etiology. For this diagnosis, we have been using a mouse polyclonal antibody to dengue virus that often does not provide a clear conclusion, because of background staining or no relevant immunostaining, which hampers the histopathological analysis. Accordingly, in the present study, anti-DENV-NS1 monoclonal antibody (4H2) was tested to determine its accuracy in immunohistochemical analysis. Twenty-four autopsy cases of hemorrhagic febrile syndrome showing histopathological alterations compatible with dengue disease were studied: twenty cases were confirmed by RT-PCR for DENV-2 and in four by RT-PCR for yellow fever virus. Samples from autopsied cases of deaths caused by other infectious diseases (two meningitis C and two severe acute respiratory syndrome caused by influenza A H1N1) were included as negative control cases. Positive immunostaining for DENV-NS1 was detected in 16/20 (80%) liver samples and 11/15 (73%) spleen samples from autopsied hemorrhagic dengue patients, whereas the polyclonal antibody detected DENV antigens in 12/20 (60%) liver and in 6/15 (40%) spleen samples from the same cases. Positive results were not obtained with liver biopsy samples from yellow fever or Neisseria meningitides and Flu-A cases. 4H2 mAb recognizes the native protein of the four DENV serotypes in infected cells and did not cross-react with native ZIKV- or CHKV-infected cells by immunohistochemical assay, so it is a useful tool for differential histopathological conclusion of acute febrile hemorrhagic deaths.


Assuntos
Vírus da Dengue , Dengue , Vírus da Influenza A Subtipo H1N1 , Infecção por Zika virus , Zika virus , Anticorpos Monoclonais , Anticorpos Antivirais , Brasil , Dengue/diagnóstico , Humanos , Proteínas não Estruturais Virais
9.
Front Cell Infect Microbiol ; 12: 825856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223548

RESUMO

Shiga toxins (Stx) are AB5-type toxins, composed of five B subunits which bind to Gb3 host cell receptors and an active A subunit, whose action on the ribosome leads to protein synthesis suppression. The two Stx types (Stx1 and Stx2) and their subtypes can be produced by Shiga toxin-producing Escherichia coli strains and some Shigella spp. These bacteria colonize the colon and induce diarrhea that may progress to hemorrhagic colitis and in the most severe cases, to hemolytic uremic syndrome, which could lead to death. Since the use of antibiotics in these infections is a topic of great controversy, the treatment remains supportive and there are no specific therapies to ameliorate the course. Therefore, there is an open window for Stx neutralization employing antibodies, which are versatile molecules. Indeed, polyclonal, monoclonal, and recombinant antibodies have been raised and tested in vitro and in vivo assays, showing differences in their neutralizing ability against deleterious effects of Stx. These molecules are in different phases of development for which we decide to present herein an updated report of these antibody molecules, their source, advantages, and disadvantages of the promising ones, as well as the challenges faced until reaching their applicability.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Fatores Imunológicos/metabolismo , Toxina Shiga/metabolismo , Toxina Shiga II/metabolismo , Toxinas Shiga
10.
Pathogens ; 11(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215173

RESUMO

The role of uropathogenic Escherichia coli (UPEC) in colonization and infection of female patients with anatomical and functional abnormalities of the urinary system is elusive. In this study, the phenotype, genotype and the phylogeny of UPEC strains isolated from the urine of pediatric female patients with cystitis of normal and abnormal urinary tract were determined. Multiplex PCR results demonstrated that 86% of the strains isolated from female patients with normal urinary tract (NUT), belonged to the phylo-groups B2 and D. Their prevalence decreased to 23% in strains isolated from patients with abnormal urinary tract (AUT). More of the isolates from AUT patients produced a biofilm on polystyrene and polyvinyl chloride (PVC), adhered to epithelial cells, and encoded pap and sfa genes than strains isolated from female patients with NUT. In contrast, a higher number of hemolysin-producing strains with serogroups associated with UPEC were isolated from patients with NUT. In summary, the results suggest that cystitis in female patients with NUT is associated with ExPEC, whereas cystitis in female patients with AUT is associated with pathogenic intestinal E. coli strains that have acquired the ability to colonize the bladder.

11.
Microorganisms ; 10(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056621

RESUMO

The secretion of α-hemolysin by uropathogenic Escherichia coli (UPEC) is commonly associated with the severity of urinary tract infections, which makes it a predictor of poor prognosis among patients. Accordingly, this toxin has become a target for diagnostic tests and therapeutic interventions. However, there are several obstacles associated with the process of α-hemolysin purification, therefore limiting its utilization in scientific investigations. In order to overcome the problems associated with α-hemolysin expression, after in silico prediction, a 20.48 kDa soluble α-hemolysin recombinant denoted rHlyA was constructed. This recombinant is composed by a 182 amino acid sequence localized in the aa542-723 region of the toxin molecule. The antigenic determinants of the rHlyA were estimated by bioinformatics analysis taking into consideration the tertiary form of the toxin, epitope analysis tools, and solubility inference. The results indicated that rHlyA has three antigenic domains localized in the aa555-565, aa600-610, and aa674-717 regions. Functional investigation of rHlyA demonstrated that it has hemolytic activity against sheep red cells, but no cytotoxic effect against epithelial bladder cells. In summary, the results obtained in this study indicate that rHlyA is a soluble recombinant protein that can be used as a tool in studies that aim to understand the mechanisms involved in the hemolytic and cytotoxic activities of α-hemolysin produced by UPEC. In addition, rHlyA can be applied to generate monoclonal and/or polyclonal antibodies that can be utilized in the development of diagnostic tests and therapeutic interventions.

12.
Braz J Microbiol ; 53(2)2022.
Artigo em Inglês | LILACS, CONASS, Coleciona SUS, Sec. Est. Saúde SP, SESSP-IALPROD, Sec. Est. Saúde SP | ID: biblio-1418435

RESUMO

Dengue is the most prevalent arboviral disease in humans in tropical and subtropical regions, especially in urban areas, and can cause major epidemics. Although a self-limiting illness, it may sometimes have serious hemorrhagic manifestations, and the outcome of dengue hemorrhagic fever has similar clinical manifestations as in other infections, which could result in death. Therefore, autopsy procedures are required under certain circumstances such as in hemorrhagic fevers, sometimes to confirm or to clarify the diagnosis that may have epidemiological consequences. Normally, the Immunohistochemistry Laboratory of the Pathology Center of Adolfo Lutz Institute receives autopsy samples from different hospitals in Sao Paulo State to confirm a previous diagnosis, especially hemorrhagic fever of infectious etiology. For this diagnosis, we have been using a mouse polyclonal antibody to dengue virus that often does not provide a clear conclusion, because of background staining or no relevant immunostaining, which hampers the histopathological analysis. Accordingly, in the present study, anti-DENV-NS1 monoclonal antibody (4H2) was tested to determine its accuracy in immunohistochemical analysis. Twenty-four autopsy cases of hemorrhagic febrile syndrome showing histopathological alterations compatible with dengue disease were studied: twenty cases were confirmed by RT-PCR for DENV-2 and in four by RT-PCR for yellow fever virus. Samples from autopsied cases of deaths caused by other infectious diseases (two meningitis C and two severe acute respiratory syndrome caused by influenza A H1N1) were included as negative control cases. Positive immunostaining for DENV-NS1 was detected in 16/20 (80%) liver samples and 11/15 (73%) spleen samples from autopsied hemorrhagic dengue patients, whereas the polyclonal antibody detected DENV antigens in 12/20 (60%) liver and in 6/15 (40%) spleen samples from the same cases. Positive results were not obtained with liver biopsy samples from yellow fever or Neisseria meningitides and Flu-A cases. 4H2 mAb recognizes the native protein of the four DENV serotypes in infected cells and did not cross-react with native ZIKV- or CHKV-infected cells by immunohistochemical assay, so it is a useful tool for differential histopathological conclusion of acute febrile hemorrhagic deaths.


Assuntos
Dengue , Epidemias , Anticorpos Monoclonais , Antígenos
13.
Pathogens, v. 11, n. 8, 895, ago. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4485

RESUMO

The serogroup O55 of E. coli is composed of strains whose mechanisms of virulence are different from each other. Since the O55 polysaccharides are present in all E. coli O55 strains, and so are the polymers that compose the capsule of O55 atypical enteropathogenic E. coli (aEPEC), it was investigated whether anti-O55 antibodies were able to help the innate immune system to eliminate capsulated aEPEC and Shiga toxin-producing E. coli (STEC) belonging to the serogroup O55. The results demonstrate that the capsule of EPEC was able to inhibit the deposition of C3b on the bacterial surface and, as a consequence, their lysis by the alternative pathway of the complement system. However, in the presence of antibodies, the ability of the complement to lyse these pathogens was restored. It was also observed that macrophages were able to ingest EPEC and STEC, but they were only able to kill the ingested pathogens in the presence of antibodies. Anti-O55 antibodies were also able to inhibit aEPEC and STEC O55 adherence to human epithelial cells. In summary, the results demonstrated that the O55 polysaccharides have the potential to induce an effective humoral immune response against STEC and EPEC, indicating that they are good antigen targets to be used in vaccine formulations against these pathogens.

14.
Microorganisms, v. 10, n. 6, 1174, jun. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4402

RESUMO

Pil-fimbriae is a type IV pili member, which is a remarkably versatile component with a wide variety of functions, including motility, attachment to different surfaces, electrical conductance, DNA acquisition, and secretion of a broad range of structurally distinct protein substrates. Despite the previous functional characterization of Pil, more studies are required to understand the regulation of Pil expression and production, since the exact mechanisms involved in these steps are still unknown. Therefore it is extremely important to have a protein with the correct secondary and tertiary structure that will enable an accurate characterization and a specific antisera generation. For this reason, the aim of this work was to generate potential tools for further investigations to comprehend the mechanisms involved in Pil regulation and its role in pathogenic E. coli infections with the obtaining of a precise native-like recombinant PilS and the corresponding antisera. The pilS gene was successfully cloned into an expression vector, and recombinant PilS (rPilS) was efficiently solubilized and purified by metal affinity chromatography. Protein characterization analyses indicated that rPilS presented native-like secondary and tertiary structures after the refolding process. The generated anti-rPilS sera efficiently recognized recombinant and native proteins from atypical enteropathogenic E. coli strains.

15.
Front Cell Infect Microbiol, v. 12, 825856, fev. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4240

RESUMO

Shiga toxins (Stx) are AB5-type toxins, composed of five B subunits which bind to Gb3 host cell receptors and an active A subunit, whose action on the ribosome leads to protein synthesis suppression. The two Stx types (Stx1 and Stx2) and their subtypes can be produced by Shiga toxin-producing Escherichia coli strains and some Shigella spp. These bacteria colonize the colon and induce diarrhea that may progress to hemorrhagic colitis and in the most severe cases, to hemolytic uremic syndrome, which could lead to death. Since the use of antibiotics in these infections is a topic of great controversy, the treatment remains supportive and there are no specific therapies to ameliorate the course. Therefore, there is an open window for Stx neutralization employing antibodies, which are versatile molecules. Indeed, polyclonal, monoclonal, and recombinant antibodies have been raised and tested in vitro and in vivo assays, showing differences in their neutralizing ability against deleterious effects of Stx. These molecules are in different phases of development for which we decide to present herein an updated report of these antibody molecules, their source, advantages, and disadvantages of the promising ones, as well as the challenges faced until reaching their applicability.

16.
Pathogens, v. 11, n. 2, 231, fev. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4232

RESUMO

The role of uropathogenic Escherichia coli (UPEC) in colonization and infection of female patients with anatomical and functional abnormalities of the urinary system is elusive. In this study, the phenotype, genotype and the phylogeny of UPEC strains isolated from the urine of pediatric female patients with cystitis of normal and abnormal urinary tract were determined. Multiplex PCR results demonstrated that 86% of the strains isolated from female patients with normal urinary tract (NUT), belonged to the phylo-groups B2 and D. Their prevalence decreased to 23% in strains isolated from patients with abnormal urinary tract (AUT). More of the isolates from AUT patients produced a biofilm on polystyrene and polyvinyl chloride (PVC), adhered to epithelial cells, and encoded pap and sfa genes than strains isolated from female patients with NUT. In contrast, a higher number of hemolysin-producing strains with serogroups associated with UPEC were isolated from patients with NUT. In summary, the results suggest that cystitis in female patients with NUT is associated with ExPEC, whereas cystitis in female patients with AUT is associated with pathogenic intestinal E. coli strains that have acquired the ability to colonize the bladder.

17.
Microorganisms, v. 10, n. 1, 172, jan. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4105

RESUMO

The secretion of α-hemolysin by uropathogenic Escherichia coli (UPEC) is commonly associated with the severity of urinary tract infections, which makes it a predictor of poor prognosis among patients. Accordingly, this toxin has become a target for diagnostic tests and therapeutic interventions. However, there are several obstacles associated with the process of α-hemolysin purification, therefore limiting its utilization in scientific investigations. In order to overcome the problems associated with α-hemolysin expression, after in silico prediction, a 20.48 kDa soluble α-hemolysin recombinant denoted rHlyA was constructed. This recombinant is composed by a 182 amino acid sequence localized in the aa542–723 region of the toxin molecule. The antigenic determinants of the rHlyA were estimated by bioinformatics analysis taking into consideration the tertiary form of the toxin, epitope analysis tools, and solubility inference. The results indicated that rHlyA has three antigenic domains localized in the aa555–565, aa600–610, and aa674–717 regions. Functional investigation of rHlyA demonstrated that it has hemolytic activity against sheep red cells, but no cytotoxic effect against epithelial bladder cells. In summary, the results obtained in this study indicate that rHlyA is a soluble recombinant protein that can be used as a tool in studies that aim to understand the mechanisms involved in the hemolytic and cytotoxic activities of α-hemolysin produced by UPEC. In addition, rHlyA can be applied to generate monoclonal and/or polyclonal antibodies that can be utilized in the development of diagnostic tests and therapeutic interventions.

19.
Toxins (Basel) ; 13(6)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204819

RESUMO

Heat-labile toxin I (LT-I), produced by strains of enterotoxigenic Escherichia coli (ETEC), causes profuse watery diarrhea in humans. Different in vitro and in vivo models have already elucidated the mechanism of action of this toxin; however, their use does not always allow for more specific studies on how the LT-I toxin acts in systemic tracts and intestinal cell lines. In the present work, zebrafish (Danio rerio) and human intestinal cells (Caco-2) were used as models to study the toxin LT-I. Caco-2 cells were used, in the 62nd passage, at different cell concentrations. LT-I was conjugated to FITC to visualize its transport in cells, as well as microinjected into the caudal vein of zebrafish larvae, in order to investigate its effects on survival, systemic traffic, and morphological formation. The internalization of LT-I was visualized in 3 × 104 Caco-2 cells, being associated with the cell membrane and nucleus. The systemic traffic of LT-I in zebrafish larvae showed its presence in the cardiac cavity, yolk, and regions of the intestine, as demonstrated by cardiac edema (100%), the absence of a swimming bladder (100%), and yolk edema (80%), in addition to growth limitation in the larvae, compared to the control group. There was a reduction in heart rate during the assessment of larval survival kinetics, demonstrating the cardiotoxic effect of LT-I. Thus, in this study, we provide essential new depictions of the features of LT-I.


Assuntos
Toxinas Bacterianas/toxicidade , Escherichia coli Enterotoxigênica , Enterotoxinas/toxicidade , Proteínas de Escherichia coli/toxicidade , Animais , Toxinas Bacterianas/farmacocinética , Células CACO-2 , Edema/induzido quimicamente , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Enterotoxinas/farmacocinética , Proteínas de Escherichia coli/farmacocinética , Cardiopatias Congênitas/induzido quimicamente , Frequência Cardíaca/efeitos dos fármacos , Humanos , Intestinos/metabolismo , Miocárdio/metabolismo , Saco Vitelino/efeitos dos fármacos , Peixe-Zebra/anormalidades , Peixe-Zebra/metabolismo
20.
BMC Microbiol ; 21(1): 163, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078285

RESUMO

BACKGROUND: The intestinal microbiota plays a crucial role in human health, adjusting its composition and the microbial metabolites protects the gut against invading microorganisms. Enteroaggregative E. coli (EAEC) is an important diarrheagenic pathogen, which may cause acute or persistent diarrhea (≥14 days). The outbreak strain has the potent Shiga toxin, forms a dense biofilm and communicate via QseBC two-component system regulating the expression of many important virulence factors. RESULTS: Herein, we investigated the QseC histidine sensor kinase role in the microbiota shift during O104:H4 C227-11 infection in the colonic model SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) and in vivo mice model. The microbiota imbalance caused by C227-11 infection affected ỿ-Proteobacteria and Lactobacillus spp. predominance, with direct alteration in intestinal metabolites driven by microbiota change, such as Short-chain fatty acids (SCFA). However, in the absence of QseC sensor kinase, the microbiota recovery was delayed on day 3 p.i., with change in the intestinal production of SCFA, like an increase in acetate production. The higher predominance of Lactobacillus spp. in the microbiota and significant augmented qseC gene expression levels were also observed during C227-11 mice infection upon intestinal depletion. Novel insights during pathogenic bacteria infection with the intestinal microbiota were observed. The QseC kinase sensor seems to have a role in the microbiota shift during the infectious process by Shiga toxin-producing EAEC C227-11. CONCLUSIONS: The QseC role in C227-11 infection helps to unravel the intestine microbiota modulation and its metabolites during SHIME® and in vivo models, besides they contribute to elucidate bacterial intestinal pathogenesis and the microbiota relationships.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli O104/metabolismo , Proteínas de Escherichia coli/metabolismo , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Modelos Animais de Doenças , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...